A Nomenclature for Vertebral Fossae in Sauropods and Other Saurischian Dinosaurs

نویسندگان

  • Jeffrey A. Wilson
  • Michael D. D'Emic
  • Takehito Ikejiri
  • Emile M. Moacdieh
  • John A. Whitlock
چکیده

BACKGROUND The axial skeleton of extinct saurischian dinosaurs (i.e., theropods, sauropodomorphs), like living birds, was pneumatized by epithelial outpocketings of the respiratory system. Pneumatic signatures in the vertebral column of fossil saurischians include complex branching chambers within the bone (internal pneumaticity) and large chambers visible externally that are bounded by neural arch laminae (external pneumaticity). Although general aspects of internal pneumaticity are synapomorphic for saurischian subgroups, the individual internal pneumatic spaces cannot be homologized across species or even along the vertebral column, due to their variability and absence of topographical landmarks. External pneumatic structures, in contrast, are defined by ready topological landmarks (vertebral laminae), but no consistent nomenclatural system exists. This deficiency has fostered confusion and limited their use as character data in phylogenetic analysis. METHODOLOGY/PRINCIPAL FINDINGS We present a simple system for naming external neural arch fossae that parallels the one developed for the vertebral laminae that bound them. The nomenclatural system identifies fossae by pointing to reference landmarks (e.g., neural spine, centrum, costal articulations, zygapophyses). We standardize the naming process by creating tripartite names from "primary landmarks," which form the zygodiapophyseal table, "secondary landmarks," which orient with respect to that table, and "tertiary landmarks," which further delineate a given fossa. CONCLUSIONS/SIGNIFICANCE The proposed nomenclatural system for lamina-bounded fossae adds clarity to descriptions of complex vertebrae and allows these structures to be sourced as character data for phylogenetic analyses. These anatomical terms denote potentially homologous pneumatic structures within Saurischia, but they could be applied to any vertebrate with vertebral laminae that enclose spaces, regardless of their developmental origin or phylogenetic distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New vertebral lamiNae aNd PatterNs of serial variatioN iN vertebral lamiNae of sauroPod diNosaurs

Vertebral laminae connect various projections on the neural arch (costovertebral and intervertebral articulations, neural spine) and centrum of the presacral, sacral, and anterior caudal vertebrae of sauropods and other saurischian dinosaurs. The nomenclature applied to vertebral laminae is based on the landmarks they connect. Along the vertebral series and especially through regional transitio...

متن کامل

Nomenclature of Vertebral Laminae in Lizards, with Comments on Ontogenetic and Serial Variation in Lacertini (Squamata, Lacertidae)

Vertebral laminae are bony ridges or sheets that connect important morphological landmarks on the vertebrae, like diapophyses or zygapophyses. They usually exhibit some serial variation throughout the column. A consistent terminology facilitates the morphological description of this variation, and the recognition of patterns that could be taxonomically significant and could serve as phylogeneti...

متن کامل

What Lies Beneath: Sub-Articular Long Bone Shape Scaling in Eutherian Mammals and Saurischian Dinosaurs Suggests Different Locomotor Adaptations for Gigantism

Eutherian mammals and saurischian dinosaurs both evolved lineages of huge terrestrial herbivores. Although significantly more saurischian dinosaurs were giants than eutherians, the long bones of both taxa scale similarly and suggest that locomotion was dynamically similar. However, articular cartilage is thin in eutherian mammals but thick in saurischian dinosaurs, differences that could have c...

متن کامل

Why sauropods had long necks; and why giraffes have short necks

The necks of the sauropod dinosaurs reached 15 m in length: six times longer than that of the world record giraffe and five times longer than those of all other terrestrial animals. Several anatomical features enabled this extreme elongation, including: absolutely large body size and quadrupedal stance providing a stable platform for a long neck; a small, light head that did not orally process ...

متن کامل

Vertebral pneumaticity, air sacs, and the physiology of sauropod dinosaurs

—The vertebrae of sauropod dinosaurs are characterized by complex architecture involving laminae, fossae, and internal chambers of various shapes and sizes. These structures are interpreted as osteological correlates of a system of air sacs and pneumatic diverticula similar to that of birds. In extant birds, diverticula of the cervical air sacs pneumatize the cervical and anterior thoracic vert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011